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Abstract

The demand for continuous health monitoring solutions has led to the development of
innovative wearable biosensors. In this thesis, we introduce a novel approach to real-time
hydration assessment using smartwatches equipped with a low-cost spectroscopy sensor.
By integrating this technology into everyday a wearable, we aim to provide a convenient
and non-invasive method for monitoring hydration levels based on blood electrolytes con-
centration.

We present two significant use cases: 1.the measurement of electrolyte solutions using
our low-cost spectroscopy sensor and benchmark it with a high resolution spectrometer
that follows industry standards. 2. the assessment of skin hydration during workout and
fasting experiments. These use cases demonstrate the credibility of the proposed system.

We describe the signal processing techniques we used to extract meaningful data from
spectroscopic measurements. Additionally, an AI algorithm is implemented on the edge,
allowing real-time classification of hydration status into 3 distinct classes.

In the results evaluation section, we present the findings of our research, showcasing
the system’s accuracy and performance in assessing hydration status. We also delve into
additional results, focusing on emotion recognition. For this purpose, a dedicated experi-
mental setup is described, involving the use of spectroscopy data to develop an algorithm
to classify emotions as sad or happy.

In conclusion, our thesis underscores the significance of smartwatch-based electrolyte
measurement for real-time hydration assessment and its potential applications in diverse
areas of health monitoring. We discuss the implications of our findings and suggest future
work that can further enhance this technology’s capabilities.
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1 Introduction

Water is a fundamental component of the human body, constituting around 60 of an adult’s
total body mass and playing a pivotal role in the functioning of various organs. This indispens-
ability of water underscores the importance of maintaining proper hydration levels for overall
health and well-being(1). Ironically, both underhydration and overhydration pose risks, from
impacting physical performance to causing severe medical conditions, such as heart failure
exacerbated by diuretics or improper blood circulation.
Despite the critical nature of maintaining appropriate hydration levels, there’s a significant
gap in prompt, real-time monitoring solutions. Existing methods, often reliant on blood tests
or external body symptoms, are cumbersome and lack immediacy. This void becomes espe-
cially crucial considering populations at higher risks of dehydration, such as athletes, military
personnel in extreme environments, hospital patients, infants, the elderly, and even individuals
who fast for religious or cultural reasons(2). Given these complexities, there’s a growing need
for non-invasive, real-time hydration monitoring systems.

Recent developments in wearable technology offer a promising avenue for addressing these
challenges(3). These wearables, ranging from smartwatches to smart clothing, can monitor
hydration by measuring the electrolyte changes in sweat or assessing hydration at a cellular
level through electrical or optical sensors. Advances in near-infrared spectroscopy (NIRS) pro-
vide additional avenues for hydration assessment based on the optical properties of tissues.
These technological strides have been pivotal in providing a continuous, non-invasive means
to gauge hydration status, thereby having the potential to mitigate risks and improve the
quality of life for various at-risk populations.

This section aims to provide a brief review of recent advances in wearable devices employing
electrical and optical methods for non-invasive hydration monitoring. To provide context,
we consider several populations at a greater-than-average risk for developing dehydration:
athletes, military personnel in harsh environmental settings, individuals involved in infant and
maternal health, and the elderly. Specifically, we will delve into the medical and operational
causes and consequences of dehydration among these populations, informed by advancements
in wireless body sensor networks for health-monitoring applications (4). Moreover, we will
discuss existing and emerging methods and their capabilities, focusing on those that offer
real-time monitoring advantages.

1.1 Health Monitoring Across Different Populations: Innovations in Wear-
able Biosensors

Here, we offer a sneak peek into the advancements in wearable biosensors designed for moni-
toring various demographics and discuss the essential considerations involved.

Elderly Health Monitoring: Continuous health trackers requiring minimal intervention are
highly desirable for the elderly. This is because Many older persons (i.e., those 65 years of age
and older) with chronic diseases and/or functional impairment are in a state of mild hyper tonic
dehydration due to a variety of factors. Wearables like smartwatches, smart clothing stand out
due to their potential to incorporate a variety of sensors. These garments have applications
in cardiac monitoring, chronic obstructive pulmonary disease management, and hydration
monitoring. Specifically, Sweat-based wearables, such as colorimetric and electrochemical
biosensors, allow for non-invasive sampling. Electrochemical biosensors, in particular, provide
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continuous electrical readouts, making them valuable for real-time health status monitoring
in the elderly.

Infant and Maternal Health Monitoring: For neonates and infants, adaptations of adult-
designed sweat-based electrochemical biosensors can be useful. Monitoring multiple biomark-
ers—such as temperature, hydration, and pulse rate—is essential in neonatal intensive care
units and at home. Devices that are low-cost, low-maintenance, and have long battery life
are crucial. Electrochemical biosensors are attractive for these applications due to their mi-
crofabrication compatibility and real-time monitoring capabilities.

Military and Harsh Environmental Settings: In military contexts, wearable sensors are
critical for monitoring personnel in extreme conditions. Risks such as dehydration, altitude
sickness, and electrolyte imbalances can affect soldiers’ performance and health. Real-time
hydration tracking via wearable patches can offer essential data for timely interventions. Elec-
trochemical biosensors are especially suited for this, but challenges like power supply, data
transmission, and durability remain.

1.2 Literature Review

To compile relevant research papers information, an extensive literature search was conducted.
The search aimed to identify recent advancements in hydration monitoring wearable technolo-
gies. Reviews on the topic(5) usually classify hydration system based on the type of sensors
used for hydration monitoring wearable technologies. By studying the number of papers (Fig-
ure 1) we notice the two most prevalent categories are Electrical-based and Optical-based.
Electrical-based hydration tracking methods appear to dominate the current research land-
scape. This could be attributed to the well-established relationship between electrical proper-
ties of skin and hydration levels. Optical-based solutions, While fewer in number compared to
electrical methods, offer unique advantages, such as the ability to gather detailed molecular
information about skin hydration. These methods are particularly well-suited for applications
requiring precision, such as medical diagnostics. The relatively higher complexity and cost
associated with optical sensors may explain the smaller number of publications, but their po-
tential impact on healthcare and research is significant.

Figure 1: Number of publications of Hydration monitoring system categorized
based on the type of sensors used.
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1.2.1 Optical Sensors

Typically, noninvasive this method involve shining light at a specific wavelength onto the
skin to collect data. A sensor then detects the light that is reflected, absorbed, or refracted.
The wavelength of light is crucial for determining how deeply it penetrates the skin when
transmitting an optical signal, and that’s what mainly differentiate between the different
techniques including Raman spectroscopy, near-infrared spectroscopy and other Light based
spectroscopes. Table 1 depicts different Biomarkers, the Wavelength Range at which they
are detected, and Authors of the research. These techniques offer valuable insights into skin
hydration levels, with applications spanning from sports performance optimization to infant
and maternal health monitoring. However, their widespread adoption may require addressing
challenges related to sensor miniaturization and cost-effectiveness.

Biomarkers Wavelength Range Authors

Temporal changes in reflected speckles green laser (532 nm) Y. Tzabari et al.(6)
Minute variations in wrist hydration microwave range (2-6 GHz) I. Butterworth et al.(7)

UV exposure IR spectroscopy R. Benavides et al.(8)
pH levels in sweat smLED at visible light (300-700nm) F. Curto et al.(9)

multiple dermal health markers (UV)-sensitive photodetector O. Polat et al.(10)
Temporal changes in reflected speckles 600 to 1150 nm N. Ozana et al.(11)

Diffuse reflectance spectroscopy to detect fluid status 530 to 950nm V. Sandys et al.(12)
Water, Proteins, Lipids, and other skin constituents 750–2500 nm M. Mamouei et al.(13)

Water absorption peaks 940, 970, 1200, and 1450 nm M. Mamouei et al.(14)
Peak values around water overtone and combination bands 900-2100 nm M. Qassem et al.(15)

Temperature and Water content 750–2500 nm A. Bohman et al.(16)
Localized percentage water content (PWC) 650-900 nm R. Van Beers et al.(17)

Skin water content 1300-2000 nm H. Arimoto et al.(18)

Table 1: Table of Biomarkers, Wavelength Range, and Authors

1.2.2 Electrical Sensors

Electrical-based biosensors range from Capacitance and conductance-based to impedance-
based systems, they emerged as a noteworthy approach to to provide real-time data on hy-
dration status. Their ability to measure electrical properties of the skin, influenced by water
content, provides valuable quantitative data. Their non-invasive nature and ability to inte-
grate seamlessly into wearable devices make them a valuable tool for continuous monitoring.
Despite these advantages, they have limitations in assessing deeper skin layers, and their per-
formance might be influenced by factors such as ambient conditions and skin temperature.
Note that Multi-Modal Sensors represent papers that investigate wearable devices combining
multiple sensor modalities to enhance hydration monitoring accuracy and reliability. Other
Sensors are based on other type of sensors, such as Electromagnetic, thermal, and others...

1.2.3 Commercial Hydration monitoring products

In addition to academic research papers, a comprehensive analysis of commercial products
within the field of hydration monitoring was conducted. Various companies actively involved
in developing and marketing hydration tracking wearables were identified through thorough
online research. Detailed assessments were performed to compare the technological features,
functionalities, and applications of these commercial products. This analysis provides valuable
insights into the practical implementations and advancements in the field, bridging the gap
between academic research and real-world applications.
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Wristband BioPtx(19) Hydration,
Temperature,
HR, HR
variability,
Respiratory
rate, Blood
saturation

No No Rockley IR laser tech
(36 wave-
lengths),PPG:
green, red,
infrared, Ac-
celerometer

Wristband Sixty(20) Hydration,
HR, activity
levels, calo-
ries burnt,
sleep tracking

No No Sixty optical spec-
trometry.
Three LEDs
shine green,
red and in-
frared light.

wristband LVL(21) Hydration,
tracking ac-
tivity, sleep,
mood and
HR, calories.

No No BSX Athelet-
ics

Red light
technology.

Wearable
band

hDrop Gen2
(22)

Hydration
and Body
temperature.

No Pre-Order hDroptech Electrode
tracks sweat
loss and
rate, sweat,
sodium, and
potassium
levels.

Smartwatch Geca
sensor(23)

Hydration. Yes Pre-Order hydrostasis Optical spec-
troscopy, de-
tect fluid con-
centration in
the skin.

Smartwatch Aura
Strap(24)

HR, blood
saturation,
hydration.

No No Apple Electrode
measure
electrolytes
in sweat
to monitor
hydration .

Smartpatch Gx Patch(25) Hdyration,
sweat, elec-
trolyte con-
tent, body
temperature

Yes Yes epicore
Biosystems

a thin mi-
crofluidic
substrate
on the skin
that captures
sweat .

Smartpatch Hydration
Biosensor(26)

Hdyration Yes Yes Nix Electrodes
detects elec-
trochemical
biomarkers in
sweat.

Table 2: Overview of Wearable Hydration monitoring system products
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Table 2 presents a comprehensive overview of various hydration monitoring products, each
offering unique features and technologies. Notably, some products, like Rockley’s BioPtx,
employ advanced IR laser technology and multi-sensor capabilities for monitoring various health
parameters, although they are yet to be validated and made commercially available. On the
other hand, products like the Nix Hydration Biosensor and Gx Patch have undergone validation
and are readily available for use. These diverse offerings cater to different user preferences and
requirements, highlighting the evolving landscape of hydration monitoring technologies. As
we explore each product in detail, we’ll gain valuable insights into their potential applications
and benefits in real-world scenarios.

1.2.4 Difference between Wearables and Clinical Lab methods for hydration tracking

Wearables offer convenient and cost-effective options for hydration monitoring, making them
accessible to a wide audience and enabling the identification of baseline trends. However,
concerns about their reliability, lower clinical accuracy, limited fluid analysis capabilities, and
susceptibility to confounding factors are notable shortcomings. On the other hand, lab and
clinical methods provide high validity and trustworthiness, having gained regulatory approval,
but they are primarily suitable for clinical use due to their cost, instrument and personnel
requirements, and the need for combined analyses. They also face challenges related to
confounding factors. The choice between wearables and lab/clinical methods depends on
specific needs, ac- curacy requirements, and practicality for the intended application. In the
current market, optical-based wearables dominate, possibly due to their cost-effectiveness.

1.3 Contributions

• Our objective was to create a non-invasive monitoring system capable of assessing hy-
dration levels, even in the absence of sweat, by analyzing electrolyte levels in the blood-
stream.

• We seamlessly incorporated an affordable spectrophotometer into an open-source smart-
watch.

• The prototype provides on-device data analytics and evaluation, eliminating the need
for Wi-Fi or cloud computing.

• Our study presents a distinctive contribution by exploring the correlation between emo-
tions and light absorbance, representing a novel endeavor in connecting emotional states
with physiological data.
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2 Methods and Implementation

When we drink water, water molecules are absorbed in intestinal track and are distributed
through blood through the whole body. Using an optical sensor that can send light through
the skin, we can measure the fluid concentration. Different wavelength of lights are sensitive
to different molecules in the tissue. In our solution we use a sensor that measure photons
scattered back to the detector(27). The goal is to design an algorithm that defines an optimal
hydration range through the ’personal hydration index’, providing notifications when we are
below or above the optimal range. We integrated a multi wavelength spectroscopy sensor
that combines the precision of clinical spectroscopy setups, with the portability and low-cost
of LEDs into a wearable watch.

2.1 Hardware and Experimental setup

2.1.1 SparkFun Triad Spectroscopy Sensor-AS7265x

The SparkFun Triad Spectroscopy Sensor(28) is a low-cost spectrophotometer based on three
AS7265x spectral sensors connected to a visible, UV, and IR LEDs to illuminate and measure
absorbance (photon scatter) of different surfaces. The Triad combines 3 Integrated circuits
(ICs) AS72651, the AS72652, and the AS72653 and can detect lights from 410nm (UV) to
940nm (IR). 18 individual light frequencies can be measured with precision down to 28.6
nW/cm2 and accuracy of +/-12%, making previously unaffordable equipment accessible on a
regular desktop or portable setup. Figure 3 shows how each of the three ICs is connected to

Figure 2: SparkFun Triad Spectroscopy Sensor

a specific LED, and how the whole setup offers communication over I2C. An Arduino library
is used to access all the various features include taking readings and illuminating LEDs over
the I2C interface.

2.1.2 Measuring absorbance with the Triad Spectroscopy Sensor

The sensor array permits us to measure and characterize how different materials absorb and
reflect 18 different frequencies of light. The x-axis represents the wavelength and y-axis
represents the raw absorbance response. For example to differentiate between elements, we
can measure their raw absorbance by plugging the sensor to an Arduino MCU and take a
baseline reading for each sample. Now that we have a baseline we can take a reading from
an unknown thing and after comparing the new graph we can see that the unknown sample
is in fact Uranium (Figure 4).
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Figure 3: AS7265x Chip-Set Block Diagram

2.1.3 Hach DR3900 Laboratory Spectrophotometer

To evaluate the precision of the low-resolution Triad spectroscopy sensor, we employ the
Hach DR3900 Laboratory Spectrophotometer(29). This benchtop spectrophotometer oper-
ates within the visible spectrum (320 - 1100 nm) and offers more than 220 pre-configured
methods tailored for laboratory water analysis. Keeping water analysis tasks in focus, the
DR3900 spectrophotometer is specifically engineered for both safety and precision.

2.2 Use case 1: Electrolyte solution spectroscopy

In this study, we want to calibrate and benchmark our sensor with the Hach DR3900 Labora-
tory Spectrophotometer, in the following subsections, we will perform experiments where we
measure the absorbance of different solutions with the triad sensor and compare them to the
DR3900.
Absorbance, which is used in spectrophotometry, relates to the amount of light absorbed by
a material. The equation for absorbance (A) is given by A = log10(I0 / I), where I0 is the
intensity of the incident light and I is the intensity of the transmitted light. The AS7265x
sensor provides the raw intensity of light at various wavelengths, while the Hach DR 3900 out-
puts absorbance values, essentially taking the logarithm of the ratio of incident to transmitted
light intensity for you. To convert the analog output from the AS7265x sensor to absorbance
values, we follow these steps:

Calibrate the sensor: Before we start making measurements, we need to calibrate the
sensor. We do this by using a known light source with a known intensity (I0).

Measure the incident light (I0): We measure the intensity of the incident light (I0). We
do this by positioning the sensor so that it receives the light directly from the light source
without any sample in the way.

Measure the transmitted light (I): Next, we measure the intensity of the transmitted light
(I). We do this by placing the sample between the light source and the sensor, and then taking
a measurement.

Calculate the absorbance (A): After we have these two measurements, we can calculate
the absorbance (A) using the formula A = log10(I0 / I).
This process will give us the absorbance at the specific wavelengths your AS7265x sensor

9



Figure 4: Comparing Unknown sample to the baseline reading

is capable of measuring, allowing to compare the readings with the output of the Hach DR
3900. Measuring the incident light (I0) is critical to calculate the absorbance in the setup.
Unfortunately, with the AS7265x sensor, there’s no direct way to measure the incident light
(I0) using the Arduino library because the sensor is not designed to make these measurements.
A common practice in spectroscopy to get around this limitation is to measure a reference
or blank sample, usually a solution or material that does not absorb light in the wavelengths
of interest. This blank sample measurement serves as an estimate of the incident light (I0).
Here are the steps to do it:

Choose a blank sample: This sample should not absorb light in the wavelengths of interest.
It could be a solution known not to absorb at those wavelengths or simply the solvent if you’re
doing solution measurements. Measure the blank sample: Position the blank sample between
the light source and the sensor, and measure the intensity using the getCalibratedX() function
where X is each of the 18 channels available. Making sure to let the sensor warm up and
gather several readings over time to ensure a stable and accurate measurement. Store the
values: The readings from the blank sample serve as our I0 value for each of the wavelengths.
We store these values so they can be used later for calculating absorbance.

2.2.1 Calibration with sodium-based Solution

To ensure accurate calibration of our sensor using the DR3900 Laboratory Spectrophotome-
ter, we opted for a liquid sample that would exhibit a distinct peak, facilitating a more
straightforward comparison. In pursuit of this objective, we conducted an analysis on POW-
ERADE® MOUNTAIN BERRY BLAST, a beverage renowned for its claim of containing 50%

10



Figure 5: Hach DR3900 Laboratory Spectrophotometer

more electrolytes than the leading sports drink. Additionally, each bottle of POWERADE®
MOUNTAIN BERRY BLAST boasts a substantial 240mg of Sodium, a crucial parameter for
assessing hydration levels in blood.
Subsequently, the measurement of absorbance for the POWERADE® sample with the DR3900
yielded the outcome shown in figure 6.

Figure 6: Measuring the absorbance of the PowerADE sports drink with the DR300

Note that the graph shows a significant peak around the 630nm wavelength, which correspond
to the sodium detection peak found in the literature.
After calibrating the gain of some of the channels of the Triad sensor, we analysed the same
sample and obtained the graph shown in figure 7.

We observed a peak similar to the one we obtained from the DR3900 spectrometer, and
thus this experiment showed us that despite the low resolution, the Triad can be reliable to
further investigate other hydration biomarkers.

2.2.2 Sodium-Chloride solution at different concentrations

On the next experiment, we wanted to perform the same comparative analyses by measuring
sodium-chloride absorbance through different concentration. Chloride electrolyte is another
key element to evaluate hydration, thus we wanted to experiment through different concen-
tration to see if we can actually see the difference in concentration through our absorbance
analyses. The graphs in Figure 8 is the results obtained by measuring the absorbance of a
200mg then 400mg sodium-chloride solution.
As expected, the solution with higher concentration gives higher absorbance, with a relatively
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Figure 7: Measuring the absorbance of the PowerADE sports drink with Triad
spectroscopy sensor

close absorbance between the results obtained using the Triad spectroscopy sensor and the
DR3900.

2.2.3 Potasium-Chloride solution at different concentrations

Next we wanted to investigate the absorbance of a potassium chloride solution at different
concentrations. We started at a higher concentration (600mg dilluted in 10ml of water),
and compared the results of the triad sensor and the DR3900 across 4 concentrations. We
obtained the results shown in Figure 9.
In both sets of data, there is a general trend where the absorbance values increase with in-
creasing potassium chloride concentration. This relationship is expected in spectrophotometry,
where absorbance is directly proportional to the concentration of the analyte.
Again the results shows that teh abosrbance measured by the triad sensor is relqtively close
to the one we are getting with DR3900 which encourages us to pursue our experiment on hy-
dration level. Overall, this experiment provides valuable data for understanding how the Triad
sensor performs in measuring absorbance compared to a well-established spectrophotometer
like the DR3900.

2.3 Device Integration

2.3.1 DSTIKE Deauther Watch V4

The DSTIKE WATCH V4(30), is an open-source smartwatch equipped with the ESP32 micro-
controller, serves as an optimal platform for deploying TinyML models on the edge due to its
favorable memory characteristics. The ESP32 micro-controller, part of the Espressif Systems
family, is renowned for its efficiency and versatility, making it a popular choice for edge com-
puting applications. In the context of deploying machine learning models, memory constraints
play a crucial role, and the ESP32 addresses these concerns adeptly.

The ESP32 micro-controller within the DSTIKE WATCH V4 boasts a dual-core processor
and is designed with consideration for low power consumption. For machine learning appli-
cations, particularly those involving TinyML models, where memory efficiency is paramount,
the ESP32’s flash and RAM specifications make it well-suited for deployment on resource-
constrained devices. The ESP32 typically provides a sufficient amount of flash memory for
storing the model parameters and code, while its RAM capacity allows for efficient execution
of inference tasks.
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((a)) DR3900 Spectrometer Results

((b)) Triad Spectroscopy Results

Figure 8: Sodium-Chloride solution absorbance at different concentrations

In the context of the DSTIKE WATCH V4, which integrates the ESP32, the device strikes
a balance between compact design and computational capability. The inherent memory effi-
ciency of the ESP32 aligns with the DSTIKE WATCH V4’s form factor and power constraints,
making it an ideal candidate for deploying AI models directly on the wearable device. This
combination of compact design, low power consumption, and ample memory resources posi-
tions the DSTIKE WATCH V4 as a reliable platform for real-time, edge-based AI applications,
including the execution of TinyML models.

2.3.2 Prototype of the Smartwatch

The figure below shows how we integrated the triad spectroscopy sensor to the DSTike watch,
with the lights facing the bottom of the watch to target the wrist. We soldered the I2C pins
of the sensors to the open I2C pins of the dstike watch, and used a plastic case to encapsulate
the whole system.
Note that we program we are using the Arduino software to program the watch and interface
to the Triad spectroscopy sensor, we also have a USB interface to visualise and debug data
real-time via the DStike serial port.
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((a)) DR3900 Spectrometer Results

((b)) Triad Spectroscopy Results

Figure 9: Potassium-Chloride solution absorbance at different concentrations

2.4 Use case 2: Skin hydration monitoring

In this specific scenario, our objective is to assess hydration levels by analyzing spectral data
obtained from the skin. To achieve this, we conducted a series of experiments involving par-
ticipants. These experiments included data collection at multiple time points: initially when
the participants were well-hydrated before commencing a workout session, then during the
middle of the workout, and finally, at the workout’s conclusion, with no water intake allowed
throughout the entire workout duration. Additionally, we also conducted measurements in the
early morning when individuals typically experience dehydration before consuming fluids, and
later the day when the participants are fully hydrated. Our study cohort was constituted of 5
participants, 6 males aged between 20 and 32.

2.4.1 Data Collection

a. Morning Measurement (Presumed Dehydration upon Waking):
Timing: Asking participants to take the first measurement immediately upon waking up, be-
fore consuming any fluids.
Environment: Making sure the room is sufficiently lit and free from significant temperature
changes.
Duration: 6 minutes of continuous measurements. (Keeping 5 minutes after cleaning noise).
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Figure 10: DSTIKE Deauther Watch V4

Figure 11: Integration of the Triad Spectroscopy sensor to the DStike Watch

b. Pre-workout Measurement (Fully Hydrated):
Hydration: Asking participants to drink a specified amount of water (e.g., 500ml) 30 minutes
before the workout. This ensures hydration without them feeling too full during the workout.
Environment: The same environment as the workout to minimize external variability.
Duration: 5 minutes of continuous measurements. (Keeping 5 minutes after cleaning noise).

c. Mid-workout and Post-workout Measurements (Progressive Dehydration):
Depending on the workout’s intensity and type, this could be halfway through the session.

d. Post-workout: Immediately after the workout ends.
Since we are trying to classify hydration status using spectral data from skin, determining a
consistent (reference light intensity) is vital. We do that by measuring the Ambient Light:
We do this by bringing a sensor placed nearby, not in contact with the skin. This sensor
would be continuously measuring the incident light without any interference from the skin.
This method has the advantage of continuously providing a measure of the ambient light
conditions, which could change due to factors like the light source aging or external light
interference.

2.5 Machine Learning, 3 hydration status classes

In this section we dive into the machine learning analyses. We tried two different approach, we
first considered the data of all participants to train a model and classify the 3 classes of: fully-
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Figure 12: Fasting experiment setup

hydrated, mid-hydrated and dehydrated. On the second approach we isolate every participant
data during the training and generate a model specific to the individual. We want to conduct
initial aggregated analyses to identify common patterns and then delve into individual-level
analyses to account for variations and specific insights.

2.5.1 Aggregate Analyses

The goal here is to analyze and model the hydration states on an aggregated level, combining
data from all participants into a single CSV file allowing to have a larger dataset for modeling,
which can potentially lead to more robust and generalizable results.

2.5.2 Analyzing Each Participant Individually

Studying individual variations in hydration states may give us insight on how hydration af-
fects each participant differently, analyzing each participant’s data separately may be more
appropriate.

2.5.3 Correlation Analyses

To study the similarities in the data we gathered, we generated a cross-correlation matrix
where rows and columns of the matrix correspond to the sensor channels and every channel
represent a specific wavelength. The values in the matrix represent the degree of similarity or
correlation between pairs of sensor channels. Strong positive or negative values off the diagonal
for specific pairs of sensor channels, suggests that these channels tend to behave similarly or in
an opposite manner with a specific time lag. In signal processing, cross-correlation can be used
for tasks like time-delay estimation or pattern recognition. When analyzing the whole matrix,
we will be looking for overall patterns and relationships. Are there clusters of sensor channels
that show similar behavior. Interpreting the cross-correlation matrix can provide insights into
how different sensor channels interact and whether certain patterns or relationships are present
in the data.

2.5.4 Feature Extraction

In our study, the absorbance data obtained during the experiment exhibited a narrow range
of variation. Recognizing the need to extract meaningful features from this limited variability,
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Figure 13: Aggregate cross-correlation Matrix

we employed Eulerian Video Magnification. Unlike traditional methods, Eulerian Video Mag-
nification acts as a sophisticated amplification technique, enhancing subtle changes within
the data. This is particularly crucial in our context, as these amplified variations may signify
significant physiological events or anomalies that might not be readily apparent in the raw,
unprocessed data. By utilizing Eulerian Video Magnification, we aimed to uncover nuanced
patterns and fluctuations that could serve as valuable indicators of underlying physiological
dynamics related to hydration status. This approach allows for a more detailed and insightful
analysis, helping to capture and highlight subtle changes that might hold key information for
our investigation(31). We also use a Butter-worth band-pass filter reducing noise, and en-
hancing the components of interest. Figure 14 shows the difference between the original signal
and the Euler-Magnified Signal, we notice that the transform permits us to generate extended
changes from signal variations. The signal obtained from the Euler Video Magnification can

Figure 14: Input vs Magnified Signal

serve as features for our hydration classifier and can be used to describe the characteristics
of the data. These features will be fed into machine learning models to build a classification
model. Figure 15 shows the overall pipleline of our data pre-processing.

2.5.5 Multimodal Analyses

We conducted experiments with three distinct models for our hydration status classifier. The
initial model was a Support Vector Machine (SVM) classifier utilizing a linear kernel and a
regularization parameter (C) set to 1.0. The second model was a Random Forest classifier
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Figure 15: Machine Learning Model PreProcessing Pipeline

with 80 estimators and a random state of 42. After observing that the Random Forest
model exhibited superior performance compared to the SVM model, we also implemented the
XGBoost model. Further details on the outcomes of these experiments will be elaborated
upon in subsequent sections.

2.6 Implementing the AI algorithm on the Edge

The traditional workflow of cloud computing has noted several drawbacks with the continuous
growth of IoT application. Centralizing all the processing in the cloud not only keeps raising
latency and bandwidth issues, but it also creates a major vulnerability in terms of privacy
and security. The next step in IoT will be to deploy AI models on the edge as an alternative
to going through the cloud. The new process involves training on the cloud or on powerful
machines (supercomputers for example), save the best parameters, and run them on the edge.
In fact this method is useful for applications like critical analysis and patient monitoring since
it reduces needless processing time and data traffic(32).
It is now simpler for developers to create apps for these devices thanks to improved hardware
and more effective development standards, the most popular trend being TinyML, a compact
version of Machine Learn- ing permits the inference of ML models and to run complex deep
learning models on microcontroller-based embedded devices that are also cheap, and require
less resource and power consumption(33). Tensor Flow Lite Micro (TF Lite Micro) is the most
used TinyML framework, it is python based and was specifically designed to get integrated into
micro-controller units (MCUs)(34). It is used to deploy ml on mobile device and embedded
systems, the interpreter currently supports a limited subset of TensorFlow operators that have
been optimized for on device use. This means that some models require additional steps
to work with TensorFlow Lite. We don’t have to either master Machine Learning nor C++
to successfully train, convert and deploy a TinyML model to an Arduino board for example,
starting from scratch. It usually takes a line of code to convert the machine learning model
(h5) into it’s embedded version (header file).

2.6.1 Deploying our ML model in the Watch

To run a TinyML model, we will make use of Python and the everywhereml package, which
is a wrapper around the well-known scikit-learn package. We will go with the Random Forest
Classifier we trained on the data described earlier, because it’s fast and accurate. As mentioned
previously, the package permits us to convert the model to a header file in a couple lines of
code. To deploy the model into our system, we import the header to the Arduino software,
and modify the code accordingly.
We choose to implement the Random Forest algorithm because, Generally, Random Forests
are less memory-intensive compared to boosting algorithms like XGBoost. Random Forests
consist of multiple decision trees, each of which is simpler and requires less memory. The
ensemble of decision trees in a Random Forest is usually smaller in size compared to the
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ensemble in XGBoost. This is because Random Forests don’t require the intricate boosting
logic present in algorithms like XGBoost. Considering these factors, and our primary concern
being simplicity, memory usage, and ease of implementation on resource-constrained devices
like the DSTIKE watch MCU, Random Forest feels like a more suitable choice.
A Random Forest Classifier can execute in 10 microseconds on an input of 1000 features and
it requires less then 1 Kb of RAM.
The final prototype average the absorbance collected over a minute period, runs the model
and display the hydration on the OLED screen. We also used the LED in the Watch to indicate
the hydration status as follow: Green for fully hydrated, blinking green for mid-hydrated, and
Red for dehydrated. The diagram below summarizes the described workflow:

Figure 16: Deploying our Hydration Status model on the edge

19



3 Results

3.1 Aggregate Analyses

In the aggregate analyses, the examination of raw signal statistics yielded limited insights.
However, more sophisticated techniques, such as cross-correlation matrices and wavelet trans-
form heatmaps, provided a richer understanding of the data. Notably, distinct patterns
emerged, offering a nuanced representation of hydration states.

The performance of three classifiers was rigorously evaluated. The Random Forest classi-
fier exhibited a commendable accuracy of approximately 84%, demonstrating its proficiency in
hydration classification. Surpassing this, the XGBoost classifier achieved an impressive accu-
racy of around 95%, showcasing its superior predictive capabilities. Specific class-wise results
in precision, recall, and F1-score were tabulated for both classifiers, emphasizing their efficacy
across different hydration states.

Table 3: Random Forest Classifier Results

Class Precision Recall F1-Score

Fully Hydrated 0.70 0.94 0.80
Mid-Hydrated 0.92 0.80 0.85
Dehydrated 0.96 0.78 0.86

Table 4: XGBoost Classifier Results

Class Precision Recall F1-Score

Dehydrated 0.96 0.95 0.95
Fully Hydrated 0.93 0.96 0.94
Mid-Hydrated 0.96 0.95 0.95

Cross-validation of the Random Forest classifier demonstrated consistent accuracy across 5
folds, with a mean accuracy of 83% and a minimal standard deviation of 2%. ROC curve anal-
ysis further validated the models’ ability to discriminate between hydration states, with ROC
(Receiver Operating Characteristic) AUC (Area Under the Curve) values providing quantita-
tive insights. We also plotted the training and validation score of our Random forest classifier,
to evaluate the overfiiting. The observed results from the training and validation scores across
the 5-fold cross-validation of our Random Forest classifier provide insights into the model’s
performance and potential overfitting. The average training score of 85.7% indicates that the
classifier has learned well from the training data, achieving a high level of accuracy during the
training phase. The assessment of overfitting through the training and validation scores re-
vealed a well-learned Random Forest classifier, with an average validationscore of 82.7%. The
low difference between training and validation scores indicated good generalization, suggesting
resilience against overfitting.

3.2 Analyzing Each Participant Individually

Individual participant analyses unveiled intriguing patterns in model performance. The Ran-
dom Forest classifier displayed variability among patients, with Patients 3,4 and 6 achieving
higher accuracy. Patient 5 presented challenges, indicating potential influences of individual

20



Figure 17: ROC curve for the three hydration classes

Figure 18: Training score vs Validation score accross 5 folds

characteristics on model efficacy. In contrast, the XGBoost classifier consistently outper-
formed the Random Forest model across all patients, with Patient 4 standing out with the
highest accuracy. The nuances in accuracy underscored the need for a nuanced understanding
of individual responses to classification models. Overall, these accuracy results suggest that
both the Random Forest and XGBoost models perform well across individual participants,
with XGBoost generally demonstrating slightly higher accuracies. The variability in accuracy
across participants may be influenced by individual characteristics or data quality.

The graphical representations, including ROC curves and training vs. validation scores,
provided visual insights into model discrimination ability and generalization. These results
collectively emphasize the success of machine learning in hydration monitoring while acknowl-
edging the importance of considering individual variations for personalized model applications.
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((a)) Random Forest Classifier Accuracy

Participant Accuracy mean validation validation std

Participant 1 0.85 0.88 0.03
Participant 2 0.83 0.84 0.02
Participant 3 0.87 0.86 0.02
Participant 4 0.93 0.91 0.02
Participant 5 0.74 0.85 0.06
Participant 6 0.87 0.82 0.04

((b)) XGBoost Accuracy

Participant Accuracy

Participant 1 0.94
Participant 2 0.89
Participant 3 0.91
Participant 4 0.95
Participant 5 0.86
Participant 6 0.89

((a)) Participant 1 ROC curve ((b)) Participant 2 ROC curve ((c)) Participant 3 ROC curve

((d)) Participant 4 ROC curve ((e)) Participant 5 ROC curve ((f)) Participant 6 ROC curve

Figure 20: Individual ROC curves of the six participants
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4 Discussions

In the aggregate analyses, the exploration of cross-correlation matrices and wavelet trans-
form heatmaps revealed nuanced variations among the three hydration states. Despite limited
insights from raw signal statistical analyses, the distinctive patterns extracted through cross-
correlation and wavelet transforms highlight the potential for advanced signal processing tech-
niques in discerning hydration status. Moving beyond signal exploration, the application of
machine learning classifiers provided compelling results. The Random Forest classifier exhib-
ited a commendable accuracy of approximately 84%, showcasing its effectiveness in hydration
classification. However, the XGBoost classifier surpassed this performance, achieving an ac-
curacy of around 94%. Detailed class-wise metrics demonstrated the superior precision, recall,
and F1-scores of both classifiers, emphasizing their proficiency in discerning hydration states.

Random Forest Classifier Results (Table 3): Fully Hydrated Class: The precision is rela-
tively low (0.70), indicating that when the model predicts a sample to be fully hydrated, it
might have a higher chance of false positives. However, the recall is high (0.94), suggest-
ing that the model effectively captures the majority of actual fully hydrated instances. The
F1-Score, which balances precision and recall, is moderate (0.80). Mid-Hydrated Class: High
precision (0.92) indicates that when the model predicts a sample as mid-hydrated, it is likely
to be correct. However, the recall is comparatively lower (0.80), meaning that the model may
miss some actual mid-hydrated instances. The F1-Score is reasonable at 0.85, reflecting a bal-
ance between precision and recall. Dehydrated Class: The model performs well in predicting
dehydrated instances, as indicated by high precision (0.96) and moderate recall (0.78). The
F1-Score is good at 0.86, suggesting a harmonious trade-off between precision and recall.

XGBoost Classifier Results (Table 4): Dehydrated Class: The precision, recall, and F1-
Score for the dehydrated class are all high (0.96, 0.95, 0.95, respectively), indicating that
the XGBoost model effectively identifies dehydrated instances with a good balance between
precision and recall. Fully Hydrated Class: Similarly, for the fully hydrated class, the XGBoost
model demonstrates high precision (0.93), recall (0.96), and F1-Score (0.94), suggesting
strong performance in identifying fully hydrated instances. Mid-Hydrated Class: Consistent
with the other classes, the XGBoost model performs well for the mid-hydrated class, with high
precision (0.96), recall (0.95), and F1-Score (0.95).

Additionally, the cross-validation of the Random Forest classifier illustrated consistent ac-
curacy across five folds, substantiating the model’s robustness with a mean accuracy of 83%
and a minimal standard deviation of 2%. These findings underscore the reliability and stability
of the Random Forest classifier, further solidifying its applicability in practical scenarios. The
comprehensive evaluation metrics presented in precision, recall, and F1-scores contribute to
a holistic understanding of the classifiers’ performance, enriching the insights gained from
aggregate analyses.
While a high average training score suggests effective learning, the relatively lower and variable
validation scores imply that the model could be sensitive to specific subsets or patterns within
the data. It’s essential to strike a balance between achieving high accuracy on the training
set and ensuring good generalization to new data.

Figure 21 shows the difference between the training and validation accuracy before and
after applying Euler Magnification. We notice that Euler Magnification not only improved the
training to validation ratio: 5% compared to 16% before applying EVM, but it also slightly
improved the accuracy of the overall model from 80% to 84% using less complex parameters
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(maximum depth and number of estimators). Our last model operates with a number of
estimators of 80 with a maximum depth limit of 5 while the previous model (without EVM)
used 100 and 10 respectively.

((a)) Before EVM

((b)) After EVM

Figure 21: Training vs Validation Accuracy before and after EVM

For individual analyses, the Random Forest model demonstrated an average accuracy of
84%, while the XGBoost model surpassed this, averaging at 90%. These outcomes underscore
the superior performance of the XGBoost classifier in discerning hydration states on an indi-
vidual level. The overall success of both models emphasizes the viability of machine learning
for individualized hydration monitoring, yet the nuances in accuracy underscore the need for a
nuanced understanding of individual responses to the classification models. In the aggregate
analyses, the Random Forest classifier achieved an accuracy of approximately 84%, and the
XGBoost classifier outperformed it with an accuracy of around 94%. While these accuracies
indicate successful hydration classification, the observed discrepancies between training and
validation scores emphasize the importance of addressing potential overfitting in the mod-
eling process, urging a balance between complexity and generalizability for optimal classifier
performance.
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5 Additional Results: Emotion Recognition

We also delve into additional results, focusing on emotion recognition. For this purpose, a
dedicated experimental setup is described, involving the use of spectroscopy data for feature
extraction, correlation analysis, and the application of a window sliding algorithm to classify
emotions as sad or happy.

5.1 Use case 3: Emotion Recognition Experimental setup

In this approach, we endeavored to categorize two emotions, namely happiness and sadness,
using data obtained through spectroscopy. While emotions have been previously explored
based on physiological data, this is the first attempt to correlate them with light absorbance.
Our investigation of existing literature revealed the following distinctions in physiological vari-
ances between the target emotions:

Happiness/Positive Affect: This emotional state is typically associated with relatively sta-
ble heart rate, moderate skin conductance, and potentially slightly elevated skin temperature.

Sadness: On the other hand, sadness is characterized by a relatively stable or decreased
heart rate, lower skin conductance, and possibly a slight decrease in skin temperature.

We propose that our deep skin spectroscopy sensor can provide insights into all these
physiological parameters, including heart rate, skin conductance, and skin temperature. We
aim to develop an algorithm that leverages these measurements to effectively classify both
happiness and sadness based on the light absorbance data.

5.2 Experiment protocol

Our study cohort was constituted of 5 participants, 3 males and 2 females aged between 22
and 32. To elicit the intended emotions, we had the participants view a 6-minute compilation
video tailored to each emotion. To induce happiness, we curated a compilation featuring
heartwarming moments, including reunions with loved ones, acts of kindness, and expressions
of joy and laughter. For the sadness emotion, we selected videos containing emotional scenes
from movies or documentaries that portrayed themes of loss, heartbreak, or poignant moments.
To ensure the emotions took effect, we excluded the first minute of the measurement.
As previously mentioned, the equation for absorbance (A) is defined as A = log10(I0 / I), where
I0 represents the incident light’s intensity, and I stands for the transmitted light’s intensity. In
our previous experiments, we employed a blank sample measurement to estimate the incident
light (I0). In this particular case, we established a ’neutral’ emotional state in which we
instructed participants to remain still and engage in meditation or clear their thoughts while
we collected their 6 minutes of data.

Figure 22: Emotion Recognition Experimental setup
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5.3 Using pyEDA for feature extraction on spectroscopy data

We utilized a powerful tool called pyEDA, which is designed for Electrodermal Activity (EDA)
analysis, also known as GSR (Galvanic Skin Response). PyEDA v.2.0 is a comprehensive
package that encompasses various aspects of EDA data processing and feature extraction. It
offers efficient preprocessing of EDA signals and the extraction of pertinent features through
a combination of statistical and automated methods. One of the noteworthy functionalities
of pyEDA involves the utilization of a Convolutional Autoencoder, a sophisticated technique
for automatic feature extraction. The tool provides a wide range of features that can be
used for the analysis of EDA data, facilitating the investigation of emotional states. In this
experiment, the primary focus was on extracting features from absorbance data captured by
the Triad spectroscopy sensor. The specific function employed from pyEDA for this analysis
was the ”Extract Statistical Features.” which generates the following outputs:
Outputs: m: This variable holds measurements for each of the segment indices, including the
number of peaks, the mean of EDA, and the maximum value of the peaks. wd: This variable
contains filtered phasic GSR, phasic GSR, tonic GSR, and a peaklist for each of the segment
indices. eda-clean: This variable stores the preprocessed GSR data, ready for further analysis.
graphs and comments.
In our case, after analysing all the results, we noticed that the phasor gsr feature provides
very intresting results that would surely permit to distinguish between two emotions, as the
figures below shows:

((a)) Participant 1 and 2 Phasor GSR, Series 1 and 2
are Happy state and Series 3 and 4 are Sad

((b)) Participant 3 Phasor GSR, Series 1 is Happy state
and Series 2 is Sad

Figure 23: pyEDA feature extraction on participants 1,2 and 3

The data representing the happy state exhibit a distinctive pattern. It begins with a rapid
decline from its peak value to a point below zero, then gradually returns to zero, extending
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indefinitely. In contrast, the data for the sad state displays a different behavior. It initiates with
a peak value and undergoes oscillations, but these oscillations gradually diminish, eventually
approaching zero for an infinite duration.

5.4 Correlation Results

Here we generate the cross-correlation matrix similar to our hydration tracking experiment.

In this case we can observe similar patterns in the sad data for every participants, where can
clearly see patterns of higher correlations between the channels 0-5 (410nm, 435nm, 470nm,
510nm and 535nm wavelengths) compared to the happy data matrix and a more distributed
correlation strength in the rest of the matrix where in the happy data a weaker correlation is
observed. Only one exception with participant one where the matrix were a little more similar
and the pattern less stressed.

5.5 Window sliding Algorithm to classify sad and happy emotions

In the pursuit of emotion classification, we developed a sliding window algorithm combined
with a Random Forest classifier. This approach is designed to leverage spectroscopy data to
discern emotional states, specifically happiness and sadness.
We began by loading our preprocessed data, which were organized in separate CSV files rep-
resenting various emotional states. These data files were harmoniously concatenated into a
single dataset, ensuring that the columns aligned correctly. The corresponding labels were
then assigned: 1 for happiness, and 2 for sadness.

A critical aspect of our algorithm is the configuration of the sliding window. The slid-
ing window’s purpose is to segment the continuous data stream into smaller windows of a
specified size. In our case, we determined a window size of 18 measurements, with a step
size of 30 measurements. This configuration ensures that each window covers a segment of
the data while maintaining overlap to capture transitions and variations in the emotional state.

The sliding window function was implemented to extract these windows and their corre-
sponding labels from the continuous data stream. As the window slides along the data, it
collects a set of consecutive measurements and associates them with a label representative of
the emotion observed within the window. These windows and labels form the basis for our
training and testing datasets.
To train and evaluate the performance of our emotion classification model, the collected win-
dows and labels were divided into training and testing sets. An 80-20 split was employed,
with 80% of the data used for training and the remaining 20% for testing.
We chose to employ a Random Forest classifier with 100 trees. This model was trained on
the flattened window data obtained from our training set. After training the Random Forest
classifier, we applied it to the test data to predict emotional states within the sliding windows.
The predictions were then compared to the actual labels to evaluate the model’s performance.
We calculated the accuracy of the model, and notably, our classifier achieved an accuracy
of 83%, signifying its effectiveness in distinguishing between happiness and sadness based on
the spectroscopy data captured within the sliding windows. This sliding window algorithm, in
conjunction with the Random Forest classifier, demonstrates its potential to effectively clas-
sify emotions in real-time based on spectroscopic data, providing a valuable tool for emotion
analysis and research.
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((a)) Participant 1 Happy/Sad Correlation Matrix

((b)) Participant 2 Happy/Sad Correlation Matrix

((c)) Participant 3 Happy/Sad Correlation Matrix

((d)) Participant 4 Happy/Sad Correlation Matrix

((e)) Participant 5 Happy/Sad Correlation Matrix

Figure 24: Happy/Sad Correlation Matrix
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6 conclusion

In this thesis, we have introduced a groundbreaking approach to real-time hydration assessment
using a smartwatche equipped with a low-cost spectroscopy sensor. By seamlessly integrating
this technology into an everyday wearable, we aimed to offer a convenient and non-invasive
method for monitoring hydration levels based on blood electrolyte concentration. Two signifi-
cant use cases were explored: the measurement of electrolyte solutions and the assessment of
skin hydration during workouts and fasting experiments. These use cases demonstrated the
credibility of our proposed system.

We presented signal processing techniques for extracting meaningful data from spectro-
scopic measurements and implemented an AI algorithm on the edge for real-time hydration
status classification. The results evaluation showcased the system’s accuracy and performance,
emphasizing the potential applications in diverse areas of health monitoring. Our study made
distinctive contributions by seamlessly incorporating an affordable spectrophotometer into an
open-source smartwatch, providing on-device data analytics, and exploring the correlation be-
tween emotions and light absorbance—a novel endeavor connecting emotional states with
physiological data.

The aggregate analyses, exploring cross-correlation matrices and wavelet transform heatmaps,
revealed nuanced variations among hydration states. Machine learning classifiers, particularly
the Random Forest and XGBoost, exhibited commendable accuracies, with the latter sur-
passing the former. The detailed class-wise metrics enriched our understanding of classifier
performance. While the Random Forest classifier demonstrated consistency in cross-validation,
the slight variation in validation scores suggested the need for further refinement to balance
complexity and generalizability.

Additionally, our foray into emotion recognition showcased the effectiveness of a sliding
window algorithm combined with a Random Forest classifier. Achieving an accuracy of 83%,
this algorithm demonstrated the potential for real-time emotion classification based on spec-
troscopic data, adding a valuable dimension to emotion analysis and research.

In conclusion, our work contributes significantly to the field of continuous health moni-
toring, offering a reliable and non-invasive solution for real-time hydration assessment. The
findings underscore the potential of wearable biosensors in health monitoring and pave the
way for future research and refinement of the proposed technology.
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7 Future Work

• Following this successful proof of concept, our next step involves undertaking compre-
hensive clinical trials. These trials will involve benchmarking our hydration classification
model against established and accurate hydration tracking devices, such as the MX3 Hy-
dration Testing System (https://www.mx3diagnostics.com/products/hydration-testing-
system-pro).

• To enhance the precision of our hydration tracking system, a crucial step is the explicit
definition of hydration biomarkers. This entails a meticulous examination and selection
of specific electrolytes or wavelengths absorbance that serve as reliable indicators of
hydration status.

• Recognizing the pivotal role of data quantity in refining machine learning models, our
strategy involves an expansive data collection initiative. By amassing a more extensive
dataset, we aim to fortify the robustness and generalizability of our machine learning
model for improved hydration classification.

• Acknowledging the sensitivity of the sensor to motion, we implemented strict measures
during data collection, urging participants to remain still. Looking forward, we plan to
integrate a gyroscope into the sensor system. This addition will enable the detection of
motion noise, subsequently facilitating the implementation of a motion artifact removal
algorithm. This advancement is pivotal in ensuring the accuracy and reliability of our
hydration tracking system, especially in real-world scenarios where participant movement
is inevitable.

• Broaden the scope of the emotion recognition study to encompass additional classes,
including fear, excitement, disgust, anger, and others.

30



References

[1] D. C. Garrett, N. Rae, J. R. Fletcher, S. Zarnke, S. Thorson, D. B. Hogan, and E. C.
Fear. Engineering approaches to assessing hydration status. IEEE Reviews in Biomedical
Engineering, 11:233–248, 2018.

[2] I. M. Gidado, M. Qassem, I. F. Triantis, and P. A. Kyriacou. Review of advances in the
measurement of skin hydration based on sensing of optical and electrical tissue properties.
Sensors, 22(19):7151, 2022.

[3] M. Qassem and P. Kyriacou. Review of modern techniques for the assessment of skin
hydration. Cosmetics, 6(1):19, 2019.

[4] Y. Hao and R. Foster. Wireless body sensor networks for health-monitoring applications.
Physiological Measurement, 29(11):R27–R56, 2008.

[5] Iman M. Gidado, Meha Qassem, Iasonas F. Triantis, and Panicos A. Kyriacou. Review of
advances in the measurement of skin hydration based on sensing of optical and electrical
tissue properties. Sensors, 22(19), 2022.

[6] Yarden Tzabari Kelman, Sagie Asraf, Nisan Ozana, Nadav Shabairou, and Zeev Zalevsky.
Optical tissue probing: human skin hydration detection by speckle patterns analysis.
Biomedical Optics Express, 10, 2019.

[7] Ian Butterworth, Jose Seralles, Carlos S. Mendoza, Luca Giancardo, and Luca Daniel. A
wearable physiological hydration monitoring wristband through multi-path non-contact
dielectric spectroscopy in the microwave range. 2015.

[8] Noelle R. Benavides, Hayley E. Rutkey, Courteney M. Didomenico, Tin Wong, Joe
Martel-Foley, Chen Hsiang Yu, and Ali Kiapour. A wearable mobile-app controlled device
for continuous monitoring of uv exposure and hydration levels. 2021.

[9] Vincenzo F. Curto, S. Coyle, R. Byrne, D. Diamond, and F. Benito-Lopez. Real-time
sweat analysis: Concept and development of an autonomous wearable micro-fluidic plat-
form. volume 25, 2011.

[10] Emre O. Polat, Gabriel Mercier, Ivan Nikitskiy, Eric Puma, Teresa Galan, Shuchi Gupta,
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